Type Condition

Fairfield, CT

195 Clinical Trials near Fairfield, CT

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase II trial compares capecitabine and temozolomide to lutetium Lu 177 dotatate for the treatment of pancreatic neuroendocrine tumors that have spread to other parts of the body (advanced) or are not able to be removed by surgery (unresectable). Chemotherapy drugs, such as capecitabine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and may reduce harm to normal cells. The purpose of this study is to find out whether capecitabine and temozolomide or lutetium Lu 177 dotatate may kill more tumor cells in patients with advanced pancreatic neuroendocrine tumors.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

31 Participants Needed

This phase II trial studies the effect of capecitabine and temozolomide after surgery in treating patients with high-risk well-differentiated pancreatic neuroendocrine tumors. Chemotherapy drugs, such as capecitabine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving capecitabine and temozolomide after surgery could prevent or delay the return of cancer in patients with high-risk well-differentiated pancreatic neuroendocrine tumors.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

141 Participants Needed

This is a two phase study investigating combinations of pharmacological and behavioral interventions to optimize the treatment of Opioid Use Disorder (OUD). The Retention Phase will assess strategies for improving retention on buprenorphine (BUP) and extended-release injectable naltrexone (XR-NTX). The Discontinuation Phase will assess which approaches are most likely to lead to long-term success (absence of relapse), and what characteristics of participants distinguish those who can safely discontinue Medications for Opioid Use Disorder (MOUD) from those who remain at risk of relapse and should not discontinue.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

1516 Participants Needed

This phase I/II trial studies the side effects and best dose of copanlisib and how well it works when given together with eribulin in treating patients with triple negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as eribulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving copanlisib and eribulin together may work better in treating advanced stage triple negative breast cancer compared to eribulin alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

24 Participants Needed

This phase II trial studies how well paclitaxel with and without nivolumab works in treating patients with soft tissue sarcoma that have not received taxane drugs, and how well nivolumab and cabozantinib work in treating taxane pretreated patients with soft tissue sarcoma. Nivolumab works through the body's immune system to help the immune system act against tumor cells. Chemotherapy drugs, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. This trial is being done to see if the combination of nivolumab and paclitaxel or cabozantinib can shrink soft tissue sarcoma and possibly prevent it from coming back.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

90 Participants Needed

This trial studies how well paclitaxel, trastuzumab, and pertuzumab work in eliminating further chemotherapy after surgery in patients with HER2-positive stage II-IIIa breast cancer who have no cancer remaining at surgery (either in the breast or underarm lymph nodes) after pre-operative chemotherapy and HER2-targeted therapy. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Trastuzumab and pertuzumab are both a form of "targeted therapy" because they work by attaching themselves to specific molecules (receptors) on the surface of tumor cells, known as HER2 receptors. When these drugs attach to HER2 receptors, the signals that tell the cells to grow are blocked and the tumor cell may be marked for destruction by the body's immune system. Giving paclitaxel, trastuzumab, and pertuzumab may enable fewer chemotherapy drugs to be given without compromising patient outcomes compared to the usual treatment.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

2175 Participants Needed

This phase II trial studies how well ramucirumab and paclitaxel or the FOLFIRI regimen (leucovorin calcium, fluorouracil, and irinotecan hydrochloride) work in treating patients with small bowel cancers that have spread extensively to other anatomic sites (advanced) or are no longer responding to treatment (refractory). Ramucirumab is a monoclonal antibody that attaches to and inhibits a molecule called VEGFR-2. This may restrain new blood vessel formation therefore reducing nutrient supply to tumor which may interfere with tumor cell growth and expansion. Drugs used in chemotherapy, such as paclitaxel, leucovorin calcium, fluorouracil, and irinotecan hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving Ramucirumab plus paclitaxel or FOLFIRI, may be helpful in treating advanced or refractory small bowel cancers and may help patients live longer.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

94 Participants Needed

This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

252 Participants Needed

This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

103 Participants Needed

This phase I/II trial studies the side effects and best dose of tazemetostat and how well it works when given together with pembrolizumab in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced ) or from where it first started (primary site) to other places in the body (metastatic). Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tazemetostat and pembrolizumab may work better in treating patients with urothelial carcinoma compared to pembrolizumab without tazemetostat.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

30 Participants Needed

This trial tests different drug combinations to treat endometrial cancer that has come back or doesn't respond to usual treatments. The drugs work by either blocking enzymes needed for cancer growth or helping the immune system attack the cancer. The goal is to find the most effective treatment combination.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Female

288 Participants Needed

This phase II trial studies how well pembrolizumab and dasatinib, imatinib mesylate, or nilotinib work in treating patients with chronic myeloid leukemia and persistent detection of minimal residual disease, defined as the levels of a gene product called bcr-abl in the blood. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of cancer cells to grow and spread. Dasatinib, imatinib mesylate, and nilotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and dasatinib, imatinib mesylate, or nilotinib may work better in treating patients with chronic myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

40 Participants Needed

This randomized phase II trial studies how well abiraterone acetate and antiandrogen therapy, with or without cabazitaxel and prednisone, work in treating patients with castration-resistant prostate cancer previously treated with docetaxel that has spread to other parts of the body. Androgens can cause the growth of prostate cancer cells. Hormone therapy using abiraterone acetate and antiandrogen therapy may fight prostate cancer by lowering and/or blocking the use of androgens by the tumor cells. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving abiraterone acetate and antiandrogen therapy with or without cabazitaxel and prednisone may help kill more tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Male

223 Participants Needed

This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2/neu amplified colorectal cancer that has spread from where it started to other places in the body and cannot be removed by surgery. Monoclonal antibodies, such as trastuzumab and pertuzumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cetuximab and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

240 Participants Needed

This trial studies how well tazemetostat works in treating patients with ovarian or endometrial cancer that has come back. Tazemetostat aims to stop cancer cells from growing and spreading. The trial targets patients whose cancers have returned after initial treatment.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Female

62 Participants Needed

This phase II trial studies how well atezolizumab or atezolizumab plus bevacizumab works in treating patients with alveolar soft part sarcoma that has not been treated, has spread from where it started to other places in the body (advanced) and cannot be removed by surgery (unresectable). Atezolizumab works by unblocking the immune system, allowing the immune system cells to recognize and then attack tumor cells. Bevacizumab works by controlling the growth of new blood vessels. Giving atezolizumab alone or atezolizumab with bevacizumab may shrink the cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:2+

63 Participants Needed

This phase I/II trial studies the side effects and best dose of olaparib when given together with ramucirumab and how well they work in treating patients with gastric or gastroesophageal junction cancer that has spread to other places in the body (metastatic), has come back (recurrent), or cannot be removed by surgery (unresectable). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as ramucirumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and ramucirumab may work better in treating patients with gastric or gastroesophageal junction cancer compared to ramucirumab and paclitaxel (a chemotherapy drug) or ramucirumab alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

51 Participants Needed

This randomized phase II trial studies how well olaparib with or without atezolizumab work in treating patients with non-HER2-positive breast cancer that has spread to nearby tissue or lymph nodes (locally advanced), that cannot be removed by surgery (unresectable), or that has spread from where it first started (primary site) to other places in the body (metastatic). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. It is not known whether giving olaparib with or without atezolizumab will work better in patients with non-HER2-positive breast cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

81 Participants Needed

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer \[NPC\], and squamous cell carcinoma of the head and neck \[SCCHN\]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors \[To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org\] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor \[PNET\] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

818 Participants Needed

The purpose of the study is to learn from the real world practice of prescribing targeted therapies to patients with advanced cancer whose tumor harbors a genomic variant known to be a drug target or to predict sensitivity to a drug. NOTE: Due to character limits, the arms section does NOT include all TAPUR Study relevant biomarkers. For additional information, contact TAPUR@asco.org, or if a patient, your nearest participating TAPUR site (see participating centers). \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Results in publication or poster presentation format are posted as they become available for individual cohorts at www.tapur.org/news. The results may be accessed at any time. All results will be made available on clinicaltrials.gov at the end of the study. Indexing of available results on PubMed is in progress. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:12+

4200 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

Targeted Therapy for Cancer

Fairfield, Connecticut
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

6452 Participants Needed

This phase II trial studies how well nivolumab with or without ipilimumab works in treating patients with anal canal cancer that has not responded to previous treatment (refractory) and that has spread from where it first started (primary site) to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

37 Participants Needed

This phase II trial studies how well combination chemotherapy before and after surgery works in treating patients with localized pancreatic cancer. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, irinotecan hydrochloride, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

46 Participants Needed

This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

184 Participants Needed

The purpose of this study is to learn about the safety and how effective the study medicine (PF-07220060) plus fulvestrant is compared to the study doctor's choice of treatment in people with advanced or metastatic breast cancer. Advanced cancer is the one that is unlikely to be cured or taken care of with treatment. Metastatic cancer is the one that has spread to other parts of the body. This study is seeking female and male participants who: * are 18 years of age or older; * are hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative; * have advanced or metastatic breast cancer after taking other treatments before this study; * have not taken or need to take medications that are not allowed by the study protocol; * do not have any medical or mental conditions that may increase the risk of study participation. Half of the participants will take PF-07220060 two times daily by mouth along with fulvestrant. Fulvestrant will be given as a shot into the muscle. The other half will take the study doctor's choice of treatment which can either be: * Fulvestrant alone taken as shot into the muscle. * Everolimus along with exemestane taken once daily by mouth. This study will compare the experiences of participants receiving the study medicine plus fulvestrant to those who are receiving the study doctor's choice of treatment. This will help decide if the study medicine is safe and effective. Participants will receive study treatment and/or will be in the study until: * imaging scans (such as an MRI and/or CT) show that their cancer is getting worse. * the study doctor thinks the participant is no longer benefitting from the study medicine. * has side effects that become too severe. A side effect is a reaction (expected or unexpected) to a medicine or treatment you take. * the participant chooses to stop taking part.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

333 Participants Needed

T-DM1 vs TH for Breast Cancer

Fairfield, Connecticut
This research study is studying how well newly diagnosed breast cancer that has tested positive for a protein called HER2 responds using one of two different combination of HER2-directed therapies as a treatment after surgery. The name of the study drugs involved are: * Trastuzumab-emtansine (T-DM1, Kadcyla) * Trastuzumab SC (Herceptin Hylecta) * Paclitaxel
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

500 Participants Needed

This trial tests the VLA15 vaccine, which aims to protect against Lyme disease. It includes healthy people aged 5-65 years, both with and without a history of Lyme disease. The vaccine helps the immune system recognize and fight the bacteria that cause Lyme disease. The VLA15 vaccine builds on previous vaccines for Lyme disease.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:5 - 65

625 Participants Needed

This phase II trial studies how well berzosertib (M6620) and carboplatin with or without docetaxel works in treating patients with castration-resistant prostate cancer that has spread to other places in the body (metastatic). M6620 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving M6620, carboplatin and docetaxel may work better in treating patients with metastatic castration-resistant prostate cancer compared to carboplatin and docetaxel alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Male

73 Participants Needed

This phase II trial studies how well isatuximab works in treating patients with primary amyloidosis that has come back or does not respond to treatment. Monoclonal antibodies, such as isatuximab, may interfere with the ability of cancer cells to grow and spread.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

43 Participants Needed

This multicenter, randomized, double-blind, placebo-controlled, Phase 2 study will evaluate the efficacy of intravenous prasinezumab (RO7046015/PRX002) versus placebo over 52 weeks in participants with early Parkinson's Disease (PD) who are untreated or treated with monoamine oxidase B (MAO-B) inhibitors since baseline. The study will consist of three parts: a 52-week, double-blind, placebo-controlled treatment period (Part 1) after which eligible participants will continue into an all-participants-on-treatment blinded dose extension for an additional 52 weeks (Part 2). Participants who complete Part 2 (including the 12-week treatment-free follow up visit assessing long term safety and efficacy of RO7046015) will be offered participation in Part 3 open-label extension (all-participants-on-RO7046015-treatment) for an additional 520 weeks.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:40 - 80

316 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials in Fairfield, CT pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do clinical trials in Fairfield, CT work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials in Fairfield, CT 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Fairfield, CT is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Fairfield, CT several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a medical study in Fairfield, CT?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest clinical trials in Fairfield, CT?

Most recently, we added PCT+2HOPE for Opioid Use Disorder, Sitz Baths for Pelvic Organ Prolapse and ELAPR002f Gel for Acne Scars to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security